Comments on "Bayesian hierarchical error model for analysis of gene expression data"

نویسندگان

  • Xiao-Lin Wu
  • Larry J. Forney
  • Paul Joyce
چکیده

Cho and Lee (2004) proposed a Bayesian hierarchical error model (HEM) to account for heterogeneous error variability in oligonucleotide microarray experiments. They estimated the parameters of their model using Markov Chain Monte Carlo (MCMC) and proposed an F-like summary statistic to identify differentially expressed genes under multiple conditions. Their HEM is one of the emerging Bayesian hierarchical modeling tools that have been developed for the analysis of multiple-level data structures and variation in microarray gene expression data (Broet et al., 2002; Tadesse and Ibrahim, 2004; Cho and Lee, 2004). In this letter, we first discuss the significance of the HEM developed by Cho and Lee. Then, we re-derive the fully conditional distributions for gene and conditional effects, since we think that these two fully conditional distributions were not presented properly in their paper. Finally, we expand the HEM to deal with biological or/and experimental correlations in gene expression data. A FORTRAN 90 program was developed to implement our extended method and it is available from the authors upon request.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Hierarchical Bayesian Models for Large Space Time Data of the Housing Prices in Tehran

Housing price data is correlated to their location in different neighborhoods and their correlation is type of spatial (location). The price of housing is varius in different months, so they also have a time correlation. Spatio-temporal models are used to analyze this type of the data. An important purpose of reviewing this type of the data is to fit a suitable model for the spatial-temporal an...

متن کامل

The Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data

The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...

متن کامل

Bayesian error analysis model for reconstructing transcriptional regulatory networks.

Transcription regulation is a fundamental biological process, and extensive efforts have been made to dissect its mechanisms through direct biological experiments and regulation modeling based on physical-chemical principles and mathematical formulations. Despite these efforts, transcription regulation is yet not well understood because of its complexity and limitations in biological experiment...

متن کامل

Prediction of Blasting Cost in Limestone Mines Using Gene Expression Programming Model and Artificial Neural Networks

The use of blasting cost (BC) prediction to achieve optimal fragmentation is necessary in order to control the adverse consequences of blasting such as fly rock, ground vibration, and air blast in open-pit mines. In this research work, BC is predicted through collecting 146 blasting data from six limestone mines in Iran using the artificial neural networks (ANNs), gene expression programming (G...

متن کامل

Bayesian hierarchical error model for analysis of gene expression data

MOTIVATION Analysis of genome-wide microarray data requires the estimation of a large number of genetic parameters for individual genes and their interaction expression patterns under multiple biological conditions. The sources of microarray error variability comprises various biological and experimental factors, such as biological and individual replication, sample preparation, hybridization a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 22 19  شماره 

صفحات  -

تاریخ انتشار 2006